Tutorial 6

Bitwise operators, binary files, and hex editing

Bitwise operators
and masks in C

6 bit manipulation operators

only work on integrals e.g. int or char

& binary AND 101 & 110 = 100

| binary OR 101 [110 = 111

A binary XOR 101 A 110 =011

~ unary one's complement (NOT) ~101 = 010 (swap bits)
<< binary left shift 101 << 2 =1010

>> binary right shift 101 >>2 =1

beware signed numbers have a sign bit (usually in position of most significant bit)

Bitwise operators
and masks in C

* usually I have to write a binary example down to double-check
(as In previous slide)

* octal or hexadecimal can also be used in C
e octal prefixisO so01778=1"64+7"8+7 = 12710
e 1 octal digit <-> 3 binary digits
e hex prefix is Ox so0 OxFFis = 1516 +15*1 = 25540
e 2 hex digits = 8 binary digits = 1 byte

e some compiler extensions allow binary with Ob prefix

Bitfield Masks

 Common use of bitwise operators: bitfield masks
* Dpitfields are a data structure
* as an integral type - char for 8 bits, int for 32 etc

* decide what you want each bit to mean as if it
were a boolean flag

* uses less data and only 1 variable tor many tlags

Using masks

#define SAMBA_MODE (1 << 0)
#define DISCO_MODE (1 << 1)
#define SHUFFLE_MODE (1 << 2)
#define TOP_SECRET_MODE (1 << 3)

void jukebox(unsigned char flags);

int main() {

jukebox(SAMBA_MODE | SHUFFLE_MODE);

Usually enumerated types
are petter

typedef enum Genre {
GENRE POP = O,
GENRE CLASSIC HITS,
GENRE FUNK,
GENRE MAX

} Genre;

Genre songs 1n each genre[GENRE MAX];
vold play genre(Genre selection);

play genre(GENRE POP);

Hex Is useful

* coloursin HTML are in hex e.g. FFFFFF
* 2 chars for red, 2 for green, 2 for blue
e 255 vs. FF as plain-text chars saves 1 byte
* hex editing for inspecting binary files
* install 'hexedit' or a hex editor of some sort
* binary format may be smaller than ASCII
* e.g. 4-byte binary float vs. text 10000024.0000023
* harder for users to fiddle with (for better or worse)
e hacking programs or patching screw-ups (ex. Wing Commander)

 embed an image into a program

Typical Binary File

« Know your file format - specity this somewhere so you can read too
e any header? e.qg. format type or version number
e ~some sort of char code so that it can show as plain text
 number of items in next section e.g. integer with value 2
* size of data to follow e.g. 200 bytes
e 200 bytes of data
e size of next data e.qg. 204 bytes

« 204 bytes of data

L et's Write a Binary File,

Hexedit, then read it

- FILE* file ptr = fopen("myfile.bin", "wb");

wb - write binary, rb - read binary

fwrite () and fread () any memory or variable

unfortunately - not reliable for read/write whole struct

read and write assume same endianness

e safe to assume little-endian
bit order on modern machines

* network protocols often use
big-endian

BIC ENDIAN - The way
praeple alwayx braoke
thelir egque in the
Lilliiput land

LITTLE ENDIAN - The
way the king then
ordered the pecple to
break their eqge

®=-0

00000000 GF FA ED FE 07 00 00 01
00000028 5F 5F 50 41 47 45 5A 45
00000050 00 00 00 00 00 00 00 00
00000078 00 00 00 00 00 00 00 00
000000A0 07 00 00 00 05 00 00 00
000000C8 00 00 00 00 00 00 00 00
000000F0 00 04 00 80 00 00 00 00
00000118 00 00 00 00 00 00 00 00
00000140 08 04 00 80 00 00 00 00
00000168 00 00 00 00 00 00 00 00
00000190 00 04 00 80 00 00 00 00
000001B8 00 00 00 00 00 00 00 00
000001EQ@ 02 00 00 00 00 00 00 00
00000208 00 00 00 00 00 00 00 00
00000230 00 00 00 00 00 00 00 00
00000258 00 00 00 00 00 00 00 00
00000280 00 00 00 00 00 00 00 00
000002A8 00 10 00 00 01 00 00 00
000002D0 04 00 00 00 00 00 00 00
000002F8 00 10 00 00 01 00 00 00
00000320 00 00 00 00 00 00 00 00
00000348 10 10 00 00 01 00 00 00
00000370 00 00 00 00 00 00 00 00
00000398 18 10 00 00 01 00 00 00
000003C0 00 00 00 00 00 00 00 00
000003E8 40 10 00 00 01 00 00 00
00000410 00 00 00 00 00 00 00 00
00000438 00 10 00 00 00 00 00 00
00000460 22 00 00 80 30 00 00 00
00000488 90 20 00 00 68 00 00 00
000004B0 00 00 00 00 00 00 00 00
000004D8 00 00 00 00 00 00 00 00
00000500 OC 00 00 00 2F 75 73 72
00000528 A5 15 BB DF 43 52 D9 56
00000550 28 00 00 80 18 00 00 00
00000578 00 00 D6 04 00 00 01 00
000005A0 26 00 00 00 10 00 00 00
000005C8 00 00 00 00 00 00 00 00
000005F0 00 00 00 00 00 00 00 00
00000618 00 00 00 00 00 00 00 00
00000640 00 00 00 00 00 00 00 00
00000668 00 00 00 00 00 00 00 00
00000690 00 00 00 00 00 00 00 00
000006B8 00 00 00 00 00 00 00 00
000006EQ 00 00 00 00 00 00 00 00
00000708 00 00 00 00 00 00 00 00
00000730 00 00 00 00 00 00 00 00
00000758 00 00 00 00 00 00 00 00
00000780 00 00 00 00 00 00 00 00
AANANTAR o0 00 A0 A0 00 00 A0 A0

A

quicksort — hexedit demo — 181x75

~/projects/quicksort — hexedit demo

00 OF 00 00 00 A0

05

00

00

85

00

20

00

00
01
28
00
00
04
00
01
72
02
00
00
00
04
6F
02
54
00
54
00
54
00
54
00
54
00
00
01
00
98
00
00
18
10
38
2E
00
00
00
00
00
00
00
00
00
00
00
00
00
(11]

+

00 00 +rrvrvrerneinenneinenneinenns (vv.__TEXT..

00 00:ivvanansnnns __cstringeseaans __TEXT..
L] B L L T Y

00 00 . .. hivevvnnnssnntinnnnas Mediinaaaas Pous |

00 00 (.vvuveee@envnrenenrnnenseseBuavenenrens
00 00 /usr/lib/1libSystem.B.dylib......
00 00 Suuvverer venens) ienenen e vvarnnnnnnes

byte number
IN hex

actual bytes

IN hex

bytes as ASCII

Side Thoughts

* Binary files somewhat obscure your data
* Q. How could you protect against hex-edit?
* Q. How could you tell if a user has edited the data”?

* e.g. detect cheating In game by map edit

