
Tutorial 6
Bitwise operators, binary files, and hex editing

Bitwise operators  
and masks in C

• 6 bit manipulation operators

• only work on integrals e.g. int or char

• & binary AND 101 & 110 = 100

• | binary OR 101 | 110 = 111

• ^ binary XOR 101 ^ 110 = 011

• ~ unary one's complement (NOT) ~101 = 010 (swap bits)

• << binary left shift 101 << 2 = 1010

• >> binary right shift 101 >> 2 = 1

• beware signed numbers have a sign bit (usually in position of most significant bit)

Bitwise operators  
and masks in C

• usually i have to write a binary example down to double-check
(as in previous slide)

• octal or hexadecimal can also be used in C

• octal prefix is 0 so 01778 = 1*64 + 7*8 + 7 = 12710

• 1 octal digit <-> 3 binary digits

• hex prefix is 0x so 0xFF16 = 15*16 +15*1 = 25510

• 2 hex digits = 8 binary digits = 1 byte

• some compiler extensions allow binary with 0b prefix

Bitfield Masks
• Common use of bitwise operators: bitfield masks

• bitfields are a data structure

• as an integral type - char for 8 bits, int for 32 etc

• decide what you want each bit to mean as if it
were a boolean flag

• uses less data and only 1 variable for many flags

Using masks
#define SAMBA_MODE (1 << 0)  
#define DISCO_MODE (1 << 1) 
#define SHUFFLE_MODE (1 << 2)  
#define TOP_SECRET_MODE (1 << 3)  
 
void jukebox(unsigned char flags);  
 
int main() { 
 
 jukebox(SAMBA_MODE | SHUFFLE_MODE);  
…

Usually enumerated types
are better

typedef enum Genre {  
 GENRE_POP = 0,  
 GENRE_CLASSIC_HITS,  
 GENRE_FUNK,  
 GENRE_MAX  
} Genre;  
 
Genre songs_in_each_genre[GENRE_MAX];  
 
void play_genre(Genre selection);  
 
play_genre(GENRE_POP);

Hex is useful
• colours in HTML are in hex e.g. FFFFFF

• 2 chars for red, 2 for green, 2 for blue

• 255 vs. FF as plain-text chars saves 1 byte

• hex editing for inspecting binary files

• install 'hexedit' or a hex editor of some sort

• binary format may be smaller than ASCII

• e.g. 4-byte binary float vs. text 10000024.0000023

• harder for users to fiddle with (for better or worse)

• hacking programs or patching screw-ups (ex. Wing Commander)

• embed an image into a program

Typical Binary File
• Know your file format - specify this somewhere so you can read too

• any header? e.g. format type or version number

• ~some sort of char code so that it can show as plain text

• number of items in next section e.g. integer with value 2

• size of data to follow e.g. 200 bytes

• 200 bytes of data

• size of next data e.g. 204 bytes

• 204 bytes of data

Let's Write a Binary File, 
Hexedit, then read it

• FILE* file_ptr = fopen("myfile.bin", "wb");

• wb - write binary, rb - read binary

• fwrite() and fread() any memory or variable

• unfortunately - not reliable for read/write whole struct

• read and write assume same endianness

• safe to assume little-endian 
bit order on modern machines

• network protocols often use  
big-endian

bytes as ASCIIbyte number 
(in hex)

actual bytes 
(in hex)

Side Thoughts

• Binary files somewhat obscure your data

• Q. How could you protect against hex-edit?

• Q. How could you tell if a user has edited the data?

• e.g. detect cheating in game by map edit

